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ABSTRACT

Cross sections for rotational excitation of small molecules by low-energy collisions with
helium and hydrogen can currently be obtained via accurate numerical solution of the quantum
equations that describe both intermolecular forces and collision dynamics. The relevant methods
are discussed in some detail and applied to compute excitation rates for carbon monoxide. These
calculations also predict collision-induced spectral pressure broadening constants which are in
excellent agreement with available experimental data.

Subject headings: interstellar: matter — interstellar: molecules — molecular processes

1. INTRODUCTION

It now appears that a significant fraction of galactic matter resides in “dense” interstellar molecular clouds, the
presence of which had been previously overlooked because the dominant constituent, Hy, is invisible in all spectral
ranges accessible to earthbased observations. The trace constituents of these clouds, however, often have transitions
at radio and microwave frequencies, and several dozen molecular species have now been discovered. One might
hope to use observations of these to infer the conditions, such as kinetic temperatures and H, densities, in these
clouds. Indeed, this is a basic goal of current radiofrequency and microwave astronomy. As usual, interpretation
of the astrophysical observations requires an understanding of the line formation, and this in turn depends on
knowledge of the processes which populate the observed molecular levels.

Under conditions in a typical cloud essentially all molecules are in their lowest electronic and vibrational state
and only a handful of rotational levels are significantly populated. Furthermore, radiative and collisional transitions
among rotational levels occur with comparable frequency, and, since these obey different ““selection rules,” the
levels are generally not in ““local thermodynamic equilibrium” with either the radiation field or the ambient kinetic
temperature. Thus different molecules, different isotopic variants of a molecule, and different transitions in a
molecule generally display a variation in excitation temperature reflecting the competition between radiative and
collisional processes. Whereas the radiative rates are generally well known, the relevant collision cross sections are
not, and this has presented a serious obstacle to interpreting interstellar molecular spectra.

In this paper we will discuss methods for obtaining information about the collision cross sections necessary to
understand interstellar molecular clouds, and, as an example, we will apply them to carbon monoxide which is the
most abundant of the observed species. A basic difficulty is that the astrophysical problems require cross sections
between specific quantum levels, whereas experiments have so far been able to measure only averages over many
transitions. Therefore we will use theoretical techniques. The theoretical approach is conveniently divided into two
separate problems: obtaining the interaction potential between target and projectile and determining collision
dynamics on this potential surface. By taking appropriate averages over the detailed cross sections obtained this
way one can predict experimentally observable relaxation rates and this provides some check on the calculation.

In § IT we will outline the close-coupling scattering method which is essentially an exact numerical technique for
solving the quantum scattering equations. In § III methods for obtaining intermolecular potentials will be discussed,
and interactions for CO-H, CO-He, and CO-H,, will be described. Section IV gives the results of scattering calcula-
tions for these systems.

II. COLLISION THEORY

At the low kinetic velocities in interstellar clouds, the deBroglie wavelength of the projectile is comparable with
the dimensions of the target so that a quantum treatment of collision dynamics is generally necessary. The most
exact quantum approximation, valid at all energies, but computationally tractable only at very low energies, is the
close coupling method (Arthurs and Dalgarno 1960). Close coupling is undoubtedly the best available technique
for tllle v(fi:ry low kinetic temperatures in interstellar clouds where only a few quantum states are significantly
populated.

* Work supported in part by NASA grant NSG 7105.
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a) Close Coupling Method
Consider two systems, 4 and B, which are separately described by (known) Schrédinger equations,

[HA(RA) - EAi ]‘FAi(RA) =0 ’
[HB(RB) - EBj]IFBj(RB) =0 s (2-1)

where R,(Rj) are internal coordinates and E,’ (Ep') are allowed (i.e., stationary state) energies of 4(B). Let 4 and
B interact via a potential V(R,, Ry, R) which depends on the collision coordinate R as well as on the internal
coordinates of 4 and B and which becomes negligibly small at sufficiently large R; the interaction potential will be
discussed in greater detail in § III. The Schrédinger equation for the combined system is then (in atomic units)

[HiR)) + Hp(R) + V(Ry, Ry, R) — 1/2u)V5* — EI¥(R,, Rs, R) =0, 22

where p is the reduced mass for the collision, E is the total energy, and we have transformed to center of mass
coordinates.

The total wavefunction ¥ can be expanded exactly in any set of functions which is complete in the coordinates
R,, Ry, and R. For the internal coordinates, it is convenient to use ¥ ,/(R,) and ¥'z(R;) which are complete in R,
and R; by virtue of equation (2.1). For the interaction coordinate one can make the usual partial wave expansion,

using Y,m(fi) for the angular dependence, and (as yet unspecified) functions f(R) for the collision distance. Thus

P(Ry, Rz, R) = D ¥ HR)Y S (Re) Vi R) fisn(R) . (23)

ijim

If this expansion is substituted into equation (2.2) one obtains coupled differential equations for the radial functions,

i — G + - B) 5@ = 3 VBB, @4

where y denotes the quantum numbers—i, j, /, and m—and E is the total energy. The coupling matrix elements are
obtained by integrating the interaction potential over all coordinates except R:

V., R) = f AR AR dRY i (R )Y 5 (Rp)* YymA R)* x V(Ry, R, R)Y H(R)Y 5 (R5) Yin(R) . (2.5)

The sum in equation (2.4) is over the (infinite) complete sets of quantum numbers y* = i’, j', I’, and m’. The close
coupling method consists of truncating this sum to a finite set of “relevant” states of 4 and B. Often only those
states which are asymptotically energetically accessible (open channels) are retained. The partial wave expansion
can be truncated as usual at some maximum /if the interaction potential falls to zero rapidly enough. Thus the close
coupling problem requires solution of a finite set of coupled second-order differential equations.

The number of coupled equations can usually be further reduced by symmetry. For example, 4 and B generally
contain angular momenta, and these may be coupled to the angular momentum of relative motion I to form a total
angular momentum J which is a constant of the motion. Then the equations (2.4) decouple into separate sets for
each J (Arthurs and Dalgarno 1960; Jacob and Wick 1959). In some cases further decoupling is possible—for
example, due to conservation of parity.

Information about the outcome of the collision is contained entirely in the asymptotic behavior of £,(R). If the
total wavefunction is constructed as an incoming plane wave with initial quantum numbers v and outgoing spherical
waves with final quantum numbers y’, then the behavior of £,.*(R) at large R defines the scattering matrix S:

fy'y(R) ~ 87'7 eXp [—'i(ka - 177'/2)] - (k‘yy/kv’v)llzsy'y exp [i(ky'yR — I'n[2)]. ; (26)
The additional index y on the radial functions refers to the initial quantum numbers for the system imposed by the
choice of boundary conditions, and

kyy, = (2P/h2)(E - Ey') @n

is the wave number for relative motion. (Recall that the total energy E = E,, + E,, with E,, the relative collision
energy.)

All observable quantities can be computed from the S matrix. For example, for collisions between a rigid rotor and
an atom, the cross section for rotational excitation from level j to j is (in the coupled angular momentum repre-
sentation, summed over final and averaged over initial degenerate levels; Arthurs and Dalgarno 1960)

oGj; Eua) = 3.9/ Exe) = pp s 2, @ + Dldyd = SGL L B + BN @8)

J i
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The superscript J indicates the partial cross section or § matrix for total angular momentum J = j + I; E,,, is
the energy of relative motion, and E; is the rotational energy of the initial level. Similarly, the cross section which
describes collision-induced spectral pressure broadening of the isolated j,—j, spectral line is given by (Shafer and
Gordon 1973)

=7 JaM o[ JaP o\t _ aniir ig- BEYESIS(iT i .
o ) = s 3, @+ 0@, + {2 L 2 Bt — S0, 15 BV G EN (29
where E. = E, — E,, = E, — E,;, = (#*/2uwk,?, n = 1 for dipole spectra and n = 2 for Raman spectra, and
braces denote 6-j symbols (Edmonds 1960).

b) Solution of the Close Coupled Equations

The coupled differential equations (2.4) can be solved by standard step-by-step numerical integration techniques,
such as the methods of Numerov (Allison 1970) and DeVogelaere (Lester 1971). These procedures require excessive
amounts of computer time when applied to many coupled channels, however, and more efficient techniques have
been developed in the last few years. Johnson and Secrest (1966) noted that the wavefunctions f(R) are generally
not needed, but only the asymptotic behavior as described by the S matrix. They therefore developed differential
equations (or, alternatively, integral equations) for the direct computation of S. Whereas the equations for f(R)
often suffer from numerical instabilities, those for § do not. Another method has been developed by Sams and
Kouri (1969); these authors replace the coupled differential equations with coupled integral equations. Light (1971)
has reformulated the N coupled second-order equations as 2N coupled first-order equations. Perhaps the most
useful approach has been developed by Gordon (1969, 1971) who replaces the interaction potential V(R) in
successive radial intervals by approximations for which analytic solutions are known, and f(R) is obtained by
propagating such solutions from step to step. Gordon’s method utilizes the fact that V(R) is usually a slowly varying
function whereas the f(R) are oscillatory.

We have chosen Gordon’s method for solving the close coupled equations. With this method it is easier to adjust
the integration step size to maintain a desired level of accuracy, and a large saving in computational effort can be
obtained when it is realized that the errors introduced by other approximations (such as basis set truncation and
inaccurate interaction potentials) do not warrant extreme accuracy in solving the coupled differential equations.
Also, with Gordon’s method the § matrix calculation may be repeated at additional total energies with little
additional computation. Calculations at several energies are necessary because the cross sections must be averaged
over a Boltzmann distribution of collision energies for most physical processes. The scattering calculations reported
below were done with a modified and somewhat extended version of Gordon’s computer code.!

From the astrophysical point of view, then, the close coupling method need no longer be considered intractable.
Efficient algorithms and fast computers now exist which can handle scattering problems requiring fifty or so coupled
channels, and many of the rotational excitation problems at the temperatures of interstellar clouds fall into this
category.

¢) Effect of Basis Set Truncation

The major approximation in the close coupling method is the retention of only a finite subset of the complete
set of channels. It is crucial, therefore, to understand the errors which may be introduced by this approximation.
To make the discussion more concrete we consider rotational excitation of CO by a structureless, spherical pro-
jectile. Then in equation (2.1), H (R ) is the Hamiltonian of a linear rigid rotor, and the internal coordinates of A4
are just the angles of orientation of the rotor; Hj is the null operator, and B has no internal coordinates. The eigen-

functions of H, are the complete set of spherical harmonics Y;,(R,) such that the rotor has angular momentum j

with projection m on a space-fixed axis. Following Arthurs and Dalgarno (1960) j is coupled to the angular
momentum of relative motion / to form a total momentum J, and the coupled equations may be solved separately

for each J. The channels are thus specified by y = j, I. The basis set truncation involves retaining only a limited

?umbe]r of rotor j values: the necessary / values are determined for each J by angular momentum coupling, i.e.,
J—jlsl<J+].

Only a finite number of the rotational levels are energetically accessible at a given collision energy. Rotor levels
whose energy is higher than the available energy are called closed channels. The wavenumber (k,., in eq. [2.6]) for
a closed channel is an imaginary number; hence, for such channels the radial functions must asymptotically
approach decaying exponentials and the .§ matrix elements are zero. Although closed channels cannot contribute
to the wavefunction at large R, they may contribute in the region of strong interaction. The physical interpretation
of such a contribution is simple. A large momentum is transferred from the projectile to the rotor causing it to
speed up at the beginning of the collision, and some of this momentum is transferred back to the projectile before
the collision is over. In quantum language, the collision occurs through a virtual excitation to a state of high angular

1 The original program is available through the Quantum Chemistry Program Exchange, University of Indiana, Bloomington,
Indiana as program number 187. We are grateful to R. G. Gordon for numerous helpful discussions concerning his program.
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momentum of the rotor. Physical intuition suggests that successively more energetic closed channels will contribute
decreasingly to the description of the collision process. This conjecture has also been demonstrated more rigorously
by Miller (1971). By similar reasoning, for a collisional excitation from j to j° one might expect that excitations to
levels far above either j or j’ are not very important whether or not these channels are closed. This last conjecture
can be demonstrated more formally by perturbation theory arguments if the coupling is not too strong (i.e., if the
potential is not too anisotropic).

For collisions between a diatomic molecule and a spherical projectile, the interaction potential is most conveniently
expanded in terms of Legendre polynomials (cf. eq. [3.1]). If the highest significant term in this expansion is Ayqay,
then there is no direct coupling (eq. [2.5]) between states j’, j” such that |j” — j'| > Apay. Then, if transitions from
jtoj" are of interest, to first order in the coupling potential, the only important basis functions are those lower than
Amax Plus the larger of j, j'. Of course, if the coupling potential is strong (highly anisotropic), higher order (indirect
coupling) effects are not negligible, and a larger basis than that indicated by these simple arguments may be
necessary.

The effect of basis set truncation can be examined in an empirical manner by considering the convergence of the
§ matrix (or the o;;) as the basis is increased. Such studies have been reported by Lester and Bernstein (1967),
Sams and Kouri (1970), and Eastes and Secrest (1972). Similar studies are presented in the Appendix for calcula-
tions on CO.

The assumption that CO is a rigid rotor is equivalent to a basis set truncation: only the ground vibrational (and
electronic) state is included. Because vibrational energies are two to three orders of magnitude larger than rotational
energies, the higher vibrational channels are closed at energies of interest here. However, these channels can partic-
ipate in a collision just as the closed rotational channels can. Any change in the equilibrium CO bond length
during the collision is described in the close coupling formalism as a virtual vibrational excitation. Eastes and
Secrest (1972) and Lester and Schaefer (1973) have examined the effect of closed vibrational channels on the
rotational excitation of H,; their results indicate errors of less than about 10 percent due to exclusion of closed
vibrational channels. It should be noted in this context that H, is an unfavorable case for the rigid rotor approxi-
mation, since the ratio of rotational to vibrational energy is much larger for H, than for most diatomic molecules.
For other molecules the rigid rotor approximation is therefore expected to produce errors of less than 10 percent.

The assumption of a structureless projectile can also be considered in terms of basis set truncation. For He and H
only the electronic degrees of freedom are ignored, and this is undoubtedly reasonable. The most interesting pro-
jectile from the astrophysical point of view, however, is H;, and the calculations reported below treat H, as
spherically averaged in its lowest rotational level; this is equivalent to including only this one level in the basis set.
Although it is possible to include excited H, rotational levels, because of the additional labor only limited rotor-
rotor calculations have been done to date.? The rotational energy of H, is about 30 times larger than that of CO,
and rotational excitation of the projectile is indeed energetically impossible for nearly all energies considered here.
However, it would be very desirable to perform test calculations which include these closed Hj, rotational channels
to examine the error introduced by this approximation.

d) Average over Velocity Distribution
The rate of collisional excitation from level j to level i is the product of the number density of the projectiles times
a rate constant R;; which is related to the cross section as
R; = voy;, (2.10)

where v is the (relative) velocity of the projectiles. In general the rates sample a distribution of velocities, and one
must take an average over this distribution. For the most common case in which the velocities are described by a
Maxwell-Boltzmann distribution at kinetic temperature 73,

kT \v2( I \2 [
Ry = (35) (i) [ B exo - @TIIeE) @11
where p is the reduced mass for the collision and k is Boltzmann’s constant. A similar average is appropriate for
the pressure broadening cross sections. It is necessary therefore to obtain ¢,,(E) over the energy range which is
significantly sampled by the weighting function, E exp [—(E/kT,)], for the kinetic temperatures of interest.
Except at low energies the cross sections are generally smooth functions. At energies comparable with or less
than the well depth, however, a variety of resonance phenomena occur (see, e.g., Burke et al. 1969). These lead to
oscillatory structure in o,,(E) which may present difficulties in computing energy averages. To assess the magnitude
of this possible error we have performed numerical experiments, increasing the number of energy points used in
the numerical integration of equation (2.11). It appears that this error can be kept below about 10 percent even with
rather coarse grids of 20 to 40 energy points. The narrow, sharply peaked resonances which may not be found with
a coarse grid actually contribute very little to the average whereas broader, weak resonances are generally found

2 A close coupling treatment of elastic Ho—H, collisions has been reported by Monchick, Brown, and Munn ("/1973), and more
extensive calculations have been reported for this system by Green (19754).
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with reasonable grids. Because only a few channels are open in the resonance region, it is economical to use smaller
basis sets and a denser energy grid here. For the numerical integration we have used a simple trapezoidal rule
algorithm. This algorithm has the desirable feature of preserving detailed balance (the relation between R;; and
R;;) provided the S matrix is symmetric, a condition which is satisfied to numerical accuracy by the close coupling
program.

III. INTERACTION POTENTIAL
a) Born-Oppenheimer Approximation

The dominant contribution to the intermolecular potential—V(R,, Rz, R) in equation (2.2)—is the Coulomb
interaction between the electrons and nuclei of target and projectile. Other effects, such as magnetic and spin inter-
actions, are generally not important in low-energy collisions between closed-shell, ground state species. If the total
wavefunction is expanded in target and projectile eigenfunctions—as in equation (2.3)—the Coulomb interaction
will have off-diagonal matrix elements to excited electronic states. Thus, although these excited electronic states are
energetically inaccessible and electronic excitation is not of interest, the collision proceeds through virtual electronic
excitations in this representation.

Fortunately, one can generally simplify the scattering problem by choosing a different representation where there
is a single effective interaction potential which implicitly accounts for virtual electronic excitations of target and
projectile but which operates only in the space of the nuclear coordinates. This is accomplished as usual by the
Born-Oppenheimer approximation: the electronic motion is assumed to be very rapid compared with nuclear
motion so that the electrons adiabatically adjust to nuclear positions and the total wavefunctions can be written
as a product of nuclear and electronic terms:

HAlFAi = (fIAe1 + HAn“c)lFA,eluyA,nuci
and
HBlFBj = (I'Izae1 + HBnuc)lFB,eIﬂFB,nucj .

Then H,* + Hp* + Vis just the electronic (Born-Oppenheimer) Hamiltonian for the combined target-projectile
molecule, whose eigenvalues are electronic potential energy surfaces for the combined system, and whose eigen-
functions span the same space as {¥', o'} x {¥'s../}. Because both of these sets span the same space, either can be
used as the expansion basis, and, if electronic excitation is not of interest, the scattering calculation is greatly
simplified by using the target-projectile electronic functions rather than the separate target and projectile electronic
functions. Virtual electronic excitations which may still be induced—for example, by B-O breakdown terms—
are then negligible so that the scattering problem reduces to a consideration of nuclear motion on a single electronic
potential energy surface.

The interaction potential is, of course, still a function of the nuclear coordinates of target and projectile as well
as of the interaction coordinate. For a diatomic molecule (rigid rotor) and a spherical projectile, the potential
can be expressed as a function of the distance R from the molecule center of mass to the projectile and the
angle 6 between R and the molecular axis. (See Fig. 1.) It is convenient to expand the angular dependence as

V(R, ®) = > ,(R)Px(cos ©), GB.D

A

where P, are Legendre polynomials.

He

CO center of mass

8
Ce ¢ 0
fo—1.218 qu.—+le—0 914 qu—+

FiG. 1.—Coordinate system for CO collisions with a spherical projectile
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b) Experimental Information

Interaction potentials manifest themselves in a variety of static (i.e., equilibrium) and dynamic (i.e., collision)
phenomena—for example, equilibrium structure of solids, virial coefficients of gases, viscosity, sound absorption,
spin-lattice relaxation, spectral pressure broadening, fluorescence quenching, etc. (See, e.g., Hirschfelder, Curtiss,
and Bird 1954; Amdur and Jordan 1966; Bernstein and Muckerman 1967; Birnbaum 1967; Gordon, Klemperer,
and Steinfeld 1968; Margenau and Kestner 1971.) Measurements of these phenomena can, in principle, be used to
obtain information about interaction potentials. Despite the variety of available methods, however, relatively little
information has been obtained this way.

Perhaps the most important observation about the experimental determination of intermolecular potentials is
that essentially all methods are indirect. That is, the potential is obtained only by comparing observations with
predictions based on (parametrized) model potentials. Because the models are necessarily rather inflexible, and
because different experiments tend to sample different parts or different averages of the interaction, it is often
found that a potential which fits one type of data will be inadequate for another. This point has been emphasized
recently by Gordon and co-workers (Neilsen and Gordon 1973; Shafer and Gordon 1973) who note the necessity
of flexible models and the simultaneous fit to several experiments.

It is commonly assumed that certain collisional phenomena are sensitive only to the spherically averaged, iso-
tropic part of the interaction, i.e., the A = 0 term in equation (3.1). Thus gas phase viscosity and diffusion co-
efficients and virial data (Hirschfelder, Curtiss, and Bird 1955) and, more recently, molecular beam scattering
experiments (Bernstein and Muckerman 1967; Amdur and Jordan 1966) are generally interpreted this way.
Although there is some question about the validity of analyzing molecular data in terms of spherical potentials
(see, e.g., Monchick and Green 1975; Green and Monchick 1975; and references therein), such information is
available for many systems, often in the form of a Lennard-Jones or similar potential function. The Lennard-Jones
potential is given in terms of two parameters, the position r,, and depth ¢ of the well:

Vo"(R) = e[(rn/R)*® — 2(ra/R)°] . (3.2)

¢) Ab Initio Methods

The problem of determining the interaction potential between two systems, 4 and B, is essentially the quantum
chemical problem of determining the total energy of the collection of electrons and nuclei of 4 and B. Within the
Born-Oppenheimer approximation discussed above, the problem reduces to determining the electronic energy as a
function of “clamped” nuclear geometry. The major contributions to the energy are the kinetic energy of the elec-
trons and the Coulomb interactions among the electrons and nuclei; in some cases, however, other effects such as
spin-orbit interaction may be important, The Coulombic, Born-Oppenheimer Schrédinger equation is (in atomic
units)

[—1/22 Vit 4 1}; Ylr = r| — ZZ,,/{Ra —r] + szaz,,/ma ~ Ry - E(R)]‘F(r, R =0, (33)

where the indices i, j refer to electrons and a, b refer to nuclei; Z, is the nuclear charge. The problem of solving this
equation to determine E(R) has been extensively studied, and several sophisticated techniques are in current use
(see, e.g., Schaefer 1972; Hinze 1974). It should be noted that the interaction energy is the difference between the
total energy of the combined system and that of the separated systems. This can lead to large cancellation with
subsequent loss of accuracy. It is crucial, therefore, to choose methods whose absolute error does not change rapidly
with internuclear distances. In general, different techniques are useful at different separations, and it is convenient
to distinguish between long-range, short-range, and intermediate distances.

At large distances, 4 and B can be described as nonoverlapping charge distributions, and the interaction reduces
to the standard electrostatic problem of interacting permanent and induced multipole moments. Because the inter-
action is small, it is accurately computed as a perturbation of the separate systems: the difference can be calculated
directly by perturbation techniques avoiding the problem of cancellation. An explicit form for the long-range
potential can then be written in terms of properties of 4 and B. For a diatomic molecule (4) and a spherically
symmetric projectile (B), the leading terms are (Buckingham 1967)

Vol*(R) = — [aB,qu + % ooncB:IR‘G, (3.42)
ViY™(R) = —(18/5)opus Q4R™7, (3.4b)
V,AR(R) = — [amz + 2(351%3) op 3 “Al)]R—s, (3.40)
Vs"™(R) = —(12/5)apps Q4R (3.4d)
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where the angular dependence is expressed according to equation (3.1); p is the dipole moment, Q is the quadrupole
moment, U the ionization potential, and «, «;, and «,, the polarizability and its components parallel and perpen-
dicular to the molecular axis. For CO interacting with He, H, and H, the second term in v,“® and v,“* dominates
the first so that

ULR(R) = (eeay 3;A°‘AL) v“*(R) . (3.5

At small internuclear distances, the 4 and B charge distributions overlap strongly and the interaction becomes
repulsive. In this region, the system is best described as a single molecule, and molecular orbital techniques such as
the Hartree-Fock (HF) method are applicable. Orbital models assume that each electron moves independently in
the field of the *“clamped ”” nuclei and the average field of the other electrons; correlation of instantaneous individual
electron motions is ignored. This reduces equation (3.3) to an effective one-particle Schrédinger equation for each
electron. At small separations the correlation energy is much smaller than the interaction energy, and it is also
approximately independent of the separation; hence the HF method is reliable for computing the short-range
potential. On the other hand, the dispersion energy which is responsible for much of the long-range interaction is
due entirely to correlation effects and will be missing in any orbital calculation. Computer programs for obtaining
HF energies are readily available. (See, e.g., Clementi, Kistenmacher, and Popie 1973; Csizmadia ef al. 1966.) The
computation time is roughly proportional to n* where n is the number of electrons in the system, and typical running
times for a 15-electron calculation, i.e., CO-H, are 1-3 minutes per nuclear configuration on a fast machine
(e.g., an IBM 360/91).

At intermediate distances the long-range attractive forces and the short-range repulsive forces compete to form a
potential well, and this is the most difficult region for which to obtain accurate ab initio interactions. The long-range
perturbation expansion fails as the charge distributions begin to overlap. Molecular orbital methods generally
become inadequate in this region because the correlation energy is comparable with the interaction energy and
varies rapidly with distance as the orbitals change from atomic to molecular in character. To obtain accurate ab
initio potentials in the region of the well, configuration interaction (CI) techniques which explicitly include correla-
tion effects must be used. CI, unlike HF, can approach the exact solution of equation (3.3) as the size calculation is
increased. CI requires roughly an order of magnitude more computer time than a HF calculation, and this represents
a major project for all but the smallest systems. Nonetheless, such calculations are currently possible if a particular
potential is sufficiently important. (See, e.g., Green ef al. 1972; O’Neil ef al. 1973.) Furthermore, CI is likely to
become more feasible as computational techniques improve. It should be noted that the CI method is also accurate
at short- and long-range and may be useful for the latter when properties of the separated systems are not known.

d) Electron Gas Model

The ab initio methods described in the preceding section rely on approximate solution of the appropriate
Schrédinger equation. A variety of less rigorous techniques for obtaining interaction potentials have also been
developed. We will discuss only one, a method proposed by Gordon and Kim (1972), which is quite simple, yet
which appears to be remarkably reliable for certain systems at short and intermediate distances.

The energy of a uniform electron gas is a function only of its density. Gordon and Kim (1972) use this fact plus
the following assumptions to compute the interaction potential. (1) In each volume element, the electron density
is approximately constant, and the energy contribution is related to this density by the uniform electron gas
formulae; the total energy of the system is obtained by integrating over all space. (2) The electron density of the
combined system is taken as the sum of the (HF) densities of the separated systems; this assumption effectively
limits the method to interactions between closed-shell systems where the charge distributions do not rearrange to
form a chemical bond. The method fails at long-range: the induction energy is not obtained, since the charge dis-
tributions are not allowed to polarize, and the dispersion energy is not obtained as the interaction vanishes for
nonoverlapping charge distributions. (See, however, Gordon and Kim 1974.) There is a growing body of evidence
that this method is reliable for predicting the short-range angular dependence of the potential and the position of
the well. (See, e.g., Kim 1973; Green 1974a; Cohen and Pack 1974; Green et al. 1975.) Details of the computational
scheme as applied to a molecule interacting with an atom are presented elsewhere (Green et al. 1975).

e) CO-He

For CO-He, as for most other systems, only the isotropic part of the interaction potential has been inferred
experimentally. Recent molecular beam scattering data have been fitted to a Lennard-Jones potential yielding
rn = 6.61 atomic units and ¢ = 19.1 cm~* (cf. eq. [3.2]; Kuppermann, Gordon, and Coggiola 1973) in good agree-
ment with earlier virial coefficient values r, = 6.67 atomic units and ¢ = 20.8 cm~* (Hirschfelder, Curtiss, and
Bird 1954).

The isotropic potential cannot cause rotational excitation so some method of determining the anisotropy is
necessary. For preliminary calculations we adapted a method for obtaining the angle dependence which has been
extensively used by other workers: short-range anisotropies were assumed to be proportional to the short-range
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(Lennard-Jones) isotropic potential, and long-range anisotropies were taken from the asymptotic form of the long-
range interaction (eq. [3.4]) (cf. Kinsey et al. 1968 ; Burke et al. 1969; Reuss and Stolte 1969; Neilsen and Gordon
1973; Wagner and McKoy 1973; Saha et al. 1973). The resulting asymmetric Lennard-Jones (ALJ) potential can
be written as

Varsd(R, ©) = € > [0:5%R) + v;l*(R)]Pa(cos ©) (3.6)
where

vo°(R) = (rm/R)™?,
v"M(R) = —2ra/R)°,
UASR(R) = a)\UOSR9 A= 19 2 ’

and v,**(R) are taken from equation (3.4). Substituting values for the molecular constants in these latter equations
gives

v %(R) = 0.0073 (r/R)"
0“R(R) = —0.34 (r,/R)®, 3.7
va"*(R) = 0.0048 (7,/R)" .

The short-range anisotropies are somewhat more difficult to obtain, but are often estimated from geometrical
considerations. The @, term moves the “center of potential”’ away from the center of mass; assuming that CO like
the isoelectronic N, has the center of potential midway between the nuclei gives ¢, = —0.03. The a, term deforms
the potential from spherical to ellipsoidal; a value of @, = 0.2 was chosen by comparison with ab initio calculations
for H,—He. Values for r,, and € were taken from virial coefficient data.

The ALJ potential is a “reasonable” estimate insofar as it is based on the amount of experimental information
which is available for most systems. However, pressure broadening coefficients predicted from this potential were
about 30 times smaller than recent microwave values (cf. § IVa). It should be noted that sound absorption data for
CO and isotropically substituted N, had also been interpreted (Kistenmacher er al. 1970) to indicate that q, is
significantly larger than estimated from geometrical arguments. In an attempt to fit the pressure broadening data
while still retaining the ALJ form, the short-range anisotropies, a, and a,, were varied. These calculations indicated
that the true short-range potential is much more anisotropic than originally estimated, and that the pressure broaden-
ing data is insufficient to determine both a, and a,.

Another CO-He potential, based on a ““loaded sphere” (LS) model, has been suggested to account for infrared
line shapes and certain other data. This model assumes that the interaction is spherical but centered at some
distance (the “loading” distance) from the center of mass; thus there is essentially one asymmetry parameter which
can be varied to fit experimental data. The details of obtaining this potential for CO-He may be found in Gordon
(1966) and Gordon and McGinnis (1971) and references therein. The LS potential is given explicitly as

Vis(R, 0)fe = {1.628 x 10° exp [~ 12(R/r,)] — 2(rn/R)®} + {1.139 x 10% exp [— 12(R/r,)] — 0.6(r,/R)"}P,(cos 6)
+ {1.139 x 10° exp [— 12(R/r,)] — 0.4(r./ R)5}Py(cos 6) , (3.8)

where r,, = 6.61 atomic units and e = 23.6 cm 1. The isotropic part of this potentialis rather similar to the spherical
ALJ term, except that the LS potential has an exponential (modified Buckingham) short-range repulsion which is
generally more realistic than an inverse power. The large short-range anisotropies in the LS potential substantially
improve agreement with pressure broadening data. Indeed, using this potential in conjunction with semiclassical
dynamics calculations, Gordon (1966) predicted pressure broadening coefficients in excellent agreement with
experiment; however, the quantum scattering calculations presented in § IVa, using the same potential, give values
10-20 percent smaller than the semiclassical results.

The final potential was based on ab initio calculations using the electron gas model of Gordon and Kim (1972).
The ab initio surface is determined at a set of points, V(R;, ®,), and is therefore much more flexible than any (param-
etrized) analytic form. For example, the anisotropy can vary with R. For scattering calculations, the surface must
be analyzed into a Legendre series (eq. [3.1]). At each value of R,, therefore, the potential is obtained at several
values of ©,, j = 1, N, and fit to

VR, 0) = S ta(R)Py(cos ©)),  j=1,N. (3.9)

A=0

The convergence of the Legendre expansion was checked by varying the number of 8, (to 2 maximum of N = 9).
It was found that N = 7 gave satisfactory results. (For other systems it has been found preferable to employ a
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least-squares fit to eq. [3.9] minimizing the root-mean-square average deviation. See, e.g., Alexander and Berard
1974.) Smooth radial potentials and derivatives were obtained from the v,(R;) by five-point Lagrange interpolation
(see, e.g., Kopal 1955). Where necessary the v, were extrapolated at short-range by fitting an exponential to the
first two calculated R;:

U)\(.R) = A)\ eXp (_BAR), R < R2 . (3.10)
The v, at large distances were obtained by extrapolating with an inverse power fit to the last two tabulated points:
U;\(R) = C)\R_D’\, R > RN_1 . (3.11)

The importance of higher anisotropic terms in the potential was studied by including successively more of these
in trial scattering calculations. Terms through A = 4 made significant contributions to computed cross sections;
the next term, A = 5, was also retained in the final calculations. Pressure broadening coefficients calculated from
the ab initio potential were in better agreement with experiment than those from the LS potential.

The position of the minimum for the spherical part of the ab initio potential is in good agreement with the molec-
ular beam scattering and viscosity data. The well depth, however, is about 50 percent larger than experiment. The
statistical electron gas model is known to predict too deep a potential well for other He interaction potentials
(Gordon and Kim 1972), possibly due to an incorrect handling of the self-exchange term (Rae 1973; Cohen and
Pack 1974). To compensate for this inadequacy, all negative potential points were scaled by the factor 2. Also,
the vo(R) and v,(R) potentials were joined with the correct asymptotic forms (egs. [3.6] and [3.7]) at about 8 atomic
units, since the electron gas model is known to be incorrect in this region. Because the long-range v,(R) and v5(R)
terms are very small, the computed values, which go rapidly to zero, were retained. The pressure broadening
coefficients were insensitive (to 10%,) to either scaling the well depth or modifying the long-range potential. The
final “modified” ab initio (MAI) potential is given in Table 1, and shown in Figures 2 and 3.

All three potentials, ALJ, LS, and MAI, are consistent with viscosity and virial coefficient data and also with
molecular beam elastic differential scattering experiments. This is because the vo(R) term is essentially the same for
all three at thermal energies (see Fig. 2). Only the MAI potential, however, accurately reproduces recent microwave

TABLE 1

CO-He MODIFIED AB INITIO (MAI) POTENTIAL¥*

R Vo (R vy (R v, (R) vy (R) v, B v5(R)
2.00 147900.0 ~26980.0 237900.0 -73430.0 112300.0 -38810.0
2.25 89801.0 -10058.0 129780.0 -32490.0 49860.0 ~15410.0
2.50 56280.0 -6107.0 77520.0 ~-17030.0 25600.0 -6855.0
2.75 35770.0 -5699.0 49150.0 -10670.0 14860.0 -3555.0
3.00 22810.0 ~5501.0 32130.0 -7509.0 9277.0 -2184.0
3.25 14451.0 -4937.¢0 21200.0 -5545.0 6078.0 -1495.0
3.50 9029.0 -4088.0 13900.0 -4083.0 4015.0 -1047.0
3.75 5550.8 -3192.0 9032.0 ~2968.0 2667.0 -733.7
4.00 3343.3 -2363.0 5795.0 -2104.0 1758.0 -506.6
4.25 1960.3 ~-1672.0 3660.0 -1454.0 1146.0 -345.2
4.50 1110.3 -1136.0 2268.0 -980.6 738.0 -231.8
4.75 598.8 -743.7 1376.0 -646.0 469.8 -153.6
5.00 298.9 -468.0 812.2 -415.9 295.4 -100.5
5.25 129.1 -281.2 463.1 -261.2 183.2 -64.9
5.50 37.6 -159.0 251.3 -159.5 111.8 -41.4
5.78 -5.5 -82.0 126.0 -94.1 67.0 -26.1
6.00 ~18.7 -35.5 54.5 -53.1 39.2 -16.3
6.25 -22.8 -8.9 15.4 -28.0 22.3 -10.0
6.50 -21.9 3.4 -2.9 -13.1 12.2 -6.0
6.75 -19.1 7.6 -8.7 -4.7 6.3 -3.5
7.00 -16.6 8.9 -10.5 -0.2 2.9 -1.9
7.25 -15.6 8.7 -10.1 1.3 1.0 -0.9
7.50 -13.0 7.7 -8.9 1.9 0.0 -0.3
7.75 ~-11.8 6.4 -7.3 1.9 -0.5 0.1
8.00 -10.2 5.1 ~-5.7 1.7 -0.6 0.3
8.25 -95.0 3.9 -4.4 1.5 -0.7 0.4
8.50 -7.9 3.0 -3.3 1.1 -0.6 0.4
8.75 -7.0 2.2 -2.4 0.8 -0.5 0.4
9.00 -5.9 1.6 -1.7 0.6 -0.3 0.3
9.25 -5.0 1.2 -1.3 0.5 -0.3 0.2
9.50 -4.3 0.9 -0.9 0.3 -0.2 6.2
9.75 -3.7 0.6 -0.6 0.2 -0.1 0.1

10.00 -3.1 0.5 -0.5 0.1 0.0 0.0

* R in atomic units; vy in em
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Fic. 2.—Comparison of the spherical average of several CO-He interaction potentials. Computed ab initio points are given by
circles; modified ab initio (MAI), ————; Lennard-Jones (LJ), — — — —; and loaded sphere (LS), —-—+~-~ X

pressure broadening experiments (Nerf and Sonnenberg 1975). The calculated and experimental pressure broaden-
ing data are given in Table 2. Because the ab initio potential (unlike, for example, the LS potential) was obtained
independently of pressure broadening data, this agreement is believed to be quite significant.

The MAI potential is believed to accurately represent the true interaction, and it is instructive therefore to note
how it differs from model potentials which have been used in previous studies. These models can conveniently be
divided into two broad categories, one-center (molecular) potentials and many-center (dumbbell) potentials. The
former are expanded according to equation (3.1) with the spherical term generally taken from gas kinetic data. The
ALJ and LS potentials are typical examples of this approach. To our knowledge, no previous study using one-center
interactions has included angular terms higher than A = 2, although, as can be seen in Figure 3, terms through A =4
are of comparable importance for CO-He. It can also be seen in Figure 3 that the anisotropies are not, in general,
simply proportional to the spherical term, as is frequently assumed, but vary considerably with distance. In the
many-centered approach (see, e.g., Chu and Dalgarno 1975) the potential is expanded as pairwise additive atom-
atom interactions. For example, the CO-He interaction would be written as

(R, 0) = (Ro-se> Ro-ne) = Vo(Ro-me) + VolRo-xe) - (3.12)

The MAI potential canrot be written in this form; the assumption of additive forces is a very poor approximation
for this system. The inadequacy of the dumbbell model has also been noted by Harris et al. (1974) in connection
with the experimental equilibrium geometry in certain van der Waals molecular complexes.

f) CO-H

Unlike He, the valence shell of H is not saturated (i.e., not closed-shell), and the interaction between H and CO
is expected to be qualitatively different from that for He-CO because of the possibility of forming a chemical
bond. Thus the HCO radical is a known (albeit reactive) chemical species. The part of the potential energy surface
near the HCO equilibrium geometry, however, is not relevant for H-CO collisions at the low kinetic energies of
interstellar cloud. As a H atom approaches a CO molecule, dispersion forces initially lead to attraction. At closer
approach, however, the interaction rapidly becomes repulsive, forming a normal van der Waals well, since a
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Fic. 3.—Angular dependence of the CO-He (MAI) potential. The Legendre polynomial expansion v,(R) of eq. (3.1) is shown at

left; and V(R, ©) for selected angles is shown at right.

TABLE 2
CO-He PrESSURE BROADENING CROSS SECTIONS (A?)
COMPUTED
SPECTROSCOPIC
LiNE TeMPERATURE (K) ALJ* Ls* MATI} EXPERIMENTALY
{1 77 0.8 26.6 321 28+ 3
150 28.7
300 e 23.5 26.1 27+£3
e 77 0.5 24.5 28.8 -
150 26.2
300 21.9 24.1 29+ 6
273 71 - 27.4 .
150 25.2
300 .. ... 22.9
02, e, 77 0.8 26.1 32.1
150 . e 28.8
300 23.5 26.1
-3, ... 77 ... 28.8
150 26.2
300 24.1

* See text for description of potential; energy average by 4-point Gauss-Laguerre quadrature.
+ See text for description of potential; energy average by trapezoidal rule integration for 14

energies between 20 and 600 cm ™1,
1 Nerf and Sonnenberg 1975.
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bonding electron pair cannot be formed from the electron configuration appropriate to a CO molecule and a H
atom, At still shorter distance, however, this repulsive surface will cross an attractive potential energy surface that
correlates with an excited ionic (charge-transfer) state at infinity and with the stable HCO molecule at short dis-
tances. Because both of these electronic potentials have the same overall symmetry, they cannot actually cross;
rather the electronic structure of both states will change adiabatically near the *“avoided crossing.” Thus the repul-
sive ground state potential surface will eventually become attractive leading to the stable HCO configuration. This
surface will, of course, have a substantial energy barrier which must be overcome in a chemically reactive collision,
and the rate of such collisions will be insignificant at low temperatures compared with rotationally inelastic colli-
sions that sample only the van der Waals well and the repulsive outer part of the potential barrier.

Because it is not a closed-shell system, CO-H is not expected to be adequately described by the Gordon-Kim
electron gas model. The HF method, however, should be reliable for the repulsive outer wall of the potential barrier
(and also near the HCO equilibrium geometry), although not for the long-range dispersion forces nor near the
maximum of the potential barrier. This latter failing is an example of the general failure of the HF method when-
ever the electronic structure is not adequately described by a single electronic configuration. Fortunately, for the
low temperatures in interstellar clouds, it is necessary to know the repulsive potential only in the region where the
HF method is adequate. We have accordingly computed HF wavefunctions for this part of the interaction.?

For the long-range potential we have used perturbation theory results (cf. eq. [2.4]). Although there is no
experimental data for this system, the position and depth of the van der Waals minimum were estimated from the
usual combining rules (Hirschfelder, Curtiss, and Bird 1954) to be r,, = 6.5 atomic units and ¢ = 41 cm~*, The
long-range attractive potential was joined smoothly to the HF repulsive potential between 5 and 6 atomic units to
create an appropriate van der Waals well. The final potential is given in Table 3.

Our long-range potential and van der Waals well are quite similar to those adopted by Chu and Dalgarno (1975)
but our short-range repulsion is significantly different from the dumbbell model (i.e., V' = Vg + Vo) used by
them. In this context one should recall the inadequacies of the dumbbell model which were noted in § IIle. Except
at the lowest temperatures, rotationally inelastic CO-H collisions are influenced mainly by the shape of the repul-
sive potential. Qur rate constants therefore differ in detail from those presented by Chu and Dalgarno.

g) CO-H,

Just as the interaction between CO and a hydrogen atom can lead to the chemically bonded HCO radical, the
interaction with a hydrogen molecule includes the possibility of chemical bond formation to give formaldehyde.
However, to reach the portion of the potential energy surface near the HyCO equilibrium geometry requires con-
siderable changes in the CO and H, bond lengths as well as rearrangement of the electronic charge distribution, and,
as for CO-H, there is a large energy barrier which must be overcome to do this. At the low kinetic energies con-
sidered here only the rigid rotor (i.e., fixed CO and H, bond length) portions of the interaction surface and only
distances outside the potential barrier will be important.

The CO-H, interaction is more complicated than that for CO-He or CO-H due to its dependence on two
additional degrees of freedom, the angles of orientation of H,. At the low temperatures of interstellar clouds
essentially all H, is frozen in the lowest J = 0 (or possibly the metastable J = 1) rotational level, and collisional

3 Calculations were performed with the MOLECULE-SCF program written by J. Almlof, Uppsala, Sweden, and P. S. Bagus,
IBM, San Jose, California. We are grateful to P. S. Bagus and U. Wahlgren for providing a copy of this program.

TABLE 3

CO-H POTENTIAL*

R vy ®) v, (R) v, (R v, (R) AL
3.2 12374.0 -1739.0 11960.0 -6120.0 6407.0
3.6 7680.0 -2045.0 7570.90 -3208.0 3142.0
4.0 4580.0 -1797.0 4750.0 -1888.0 1665.6
4.4 2646.0 -1367.0 2900.0 -1168.0 918.2
4.8 1473.0 -944.0 1732.0 -725.0 510.6
5.2 500.0 -380.0 632.0 -276.0 178.0
5.6 120.0 -106.0 166.0 -74.6 45.0
6.0 -25.4 -12.0 12.0 -6.0 0.0
6.4 -40.6 -6.0 8.0 -4.0 0.0
6.8 -38.7 -2.0 4.0 -2.0 0.0
7.2 -32.4 -1.0 2.0 6.0 0.0
7.6 -25.8 6.0 -0.5 8.0 0.0
8.0 -20.2 6.0 -2.0 0.0 0.0
8.4 -15.7 0.0 -2.9 0.0 0.0
8.8 -12.2 0.0 -2.2 0.0 6.0

. . : s -1
* R in atomic units; v, in cm .
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excitation to higher levels is not energetically possible. It seems reasonable under these conditions that CO-H,
collisions can be described by an effective potential, averaged over the H, orientations. This idea is seen to be
mathematically exact if only the spherically symmetric, J = 0, H, rotational level is included in the close coupling
basis set (cf. eq. [2.5] and Green 1975a). The adequacy of this approximation for collisions with ortho-Hj is less
obvious because of the possible importance of long-range H, quadrupole interactions which vanish only for J = 0;
for CO-H,; collisions such long-range interactions are probably not important owing to the very small dipole
moment of CO. The validity of using a potential averaged over H, orientations has found some experimental justi-
fication in molecular beam differential elastic scattering data of Kuppermann et al. (1973) and also in the microwave
double resonance experiments of Oka (1973). As discussed below recent microwave and Raman pressure broadening
results can also be explained within this framework.

While the assumption of a spherical H, projectile simplifies the scattering calculations, the problem of obtaining
the potential is still complicated by the additional degrees of freedom. An ab initio calculation, for example, should
in principle be done at several H, orientations and then averaged over the rotational motion. For the calculations
reported here a simpler, more empirical method of obtaining the interaction was desired. The ability of such a
potential to reproduce experimental data, of course, will provide a necessary although not a sufficient condition
for its validity.

The experimental Lennard-Jones isotropic potential for CO-Hj; is similar to that for CO-He. Parameters from
molecular beam scattering data (Kuppermann et al. 1973) are r,, = 6.61 atomic units and ¢ = 46 cm 1. Thus the
potential well occurs at about the same position as for CO-He but is somewhat deeper. The short-range anisotropy,
which is the most important factor in determining rotational excitation and also pressure broadening for this
system, is expected to reflect mainly the shape of the CO electron charge distribution, and, to a lesser extent, the
“size” or charge distribution of the projectile. Because H, and He both have two electrons, it seemed probable that
the CO-He potential might, with small modifications, adequately describe the repulsive short-range CO-H,
interaction. Accordingly, the CO-He ab initio potential was modified in the following manner. (1) The well depth
was scaled to the experimental ¢ by the same procedure used for the CO-He (MAI) potential; all negative energies
were multiplied by 1.36. (2) As was also done for CO-He, the v,(R) and v,(R) terms were joined with the correct
(i-e., perturbation theory) asymptotic curves at about 8 atomic units. (3) Finally, the resulting potential was subject
to an overall radial scaling factor to account for the larger “size” of H, compared with He. The value for this factor,
1.095, was selected by comparing predicted and experimental pressure broadening data. The variation of predicted
pressure broadening cross sections as a function of the radial scaling factor is shown in Table 4 along with experi-
mental values for comparison. The final potential is able to reproduce, to within experimental error, recent micro-
wave data for broadening of the 0-1 line by both H, and D, at liquid nitrogen and room temperatures (Nerf and
Sonnenberg 1975), and also H, broadening of the 1-3 Raman line at liquid nitrogen temperature (Campaan et al.
1973). The radial scaling necessary to reproduce pressure broadening data is also consistent, within experimental
error, with the scattering and viscosity data.

IV. NUMERICAL RESULTS: CROSS SECTIONS AND RATE CONSTANTS
a) CO-He

Close coupling calculations were done for each of the three potentials—ALIJ, LS, and MAI—discussed in § I1le.
A number of calculations were performed to examine the effect of basis set truncation on computed cross sections.
As anticipated, truncation error was most severe for the MAI potential, which has the largest anisotropies, and,
therefore, the largest coupling matrix elements. Results of basis set tests with this potential are presented in the
Appendix. Basis set size will be abbreviated as Bj,,, which indicates the inclusion of rotor levels j = 0t0j = jax.

TABLE 4
PRrESSURE BROADENING OF CO BY H; AND Do *
H2 D2

SCALING
Facrort 0-1(77 K) 0-1(300 K) 1-3(77 K) 0-1(77 K) 0-1(300 K)

28 25 43

34 ce. 32 46 ..

38 30 35 55 39

41 32 36 53 40

Experimental. . ... 38 + 4% 31 + 3% 35 + 6§ 50 + 5% 38 + 4%

* Cross sections in A? for spectral line j,—j, computed with a BS basis set and a 2-point Gauss-Laguerre energy
average. Estimated uncertainty in calculations is about +2 A2,

+ Radial scaling factor to convert CO-He to CO-H; potential; see text for details.
I Nerf and Sonnenberg 1975.
§ Campaan et al. 1973.
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The test calculations indicate that inclusion of all closed plus one open channel gives computed o;. ; within 10 per-
cent of the infinite basis limit, with the possible exceptions of some small cross sections for large Aj, and cross
sections into or out of j = jyayx.

Cross sections for rotational excitation and pressure broadening were computed for each of the potentials via
equations (2.8) and (2.9) for a range of energies and averaged according to equation (2.11) at several kinetic tem-
peratures. A BS5 basis was used for all calculations with the ALJ and LS potentials. For the more realistic MAI
potential, a B5 basis was used below 30 cm %, B6 between 30 and 60 cm~?*, B7 between 60 and 80 cm~*, and a B8
between 80 and 250 cm~1; a B6 basis was used to estimate cross sections at higher energies necessary for the tail
of the Boltzmann distribution. The cross sections predicted by the three potentials differ significantly as can be
seen in Figure 4 which presents computed 0 — j cross sections as a function of energy.

The ALJ potential was rejected because, as noted previously, it fails to reproduce the experimental pressure
broadening cross sections (see Table 2). The LS potential gives pressure broadening cross sections which appear
somewhat small, although generally within experimental error. The LS potential was rejected in favor of the MAI
potential for several reasons. First, the ab initio potential does appear to give better agreement with the pressure
broadening data. Second, the MAI potential is more flexible, since the anisotropy is a function of distance; the LS
anisotropies were fixed to fit certain experiments (e.g., infrared line shapes at room temperature) and are likely to be
less adequate for processes that sample different parts of the interaction. Finally, the LS potential does not behave
correctly at large R; in particular the P, anisotropy is too large and this might cause errors at low energies.

Rate constants computed from the MAI potential are given in Table 5 for kinetic temperatures between 5 K and
100 K. I't is somewhat difficult to place error limits on these values due to the paucity of experimental data available
for this system and a lack of experience with comparably accurate calculations for other systems. Errors due to
basis set truncation and numerical integration over the velocity distribution are believed to be less than about
10 percent (with the possible exception of rates connecting levels near the basis set limit). The largest source of error
is undoubtedly due to inaccuracies in the potential, and the only way of estimating the resulting errors in rate
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Fic. 4.—Cross sections for excitation of CO in its lowest, J = 0 rotational level by collisions with He as a function of energy for
the three interaction potentials described in the text. The MAI results are thought to accurately reflect true values for this system.
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TABLE 5
MATRIX OF RATE COEFFICIENTS FOR CO-He*

Tk Ji/ Jf 0 1 2 3 4 5 6

0 .o 0.2656 0.0558 0.0003 0.0000 0.0000 6.0000
1 0.2679 e 0.0662 0.0055 0.0000 0.0000 0.0000
° 2 0.3094 0.3635 e 0.0132 0.0005 0.0000 0.0000
5K 3 0.0275 0.6001 0.2618 ves 0.0023 0.0000 0.0000
4 0.0458 0.0531 0.6338 0.1476 “es 0.0007 0.0000
5 0.0069 0.0828 0.0824 0.5928 0.1508 e 0.0003

6 0.0133 0.0264 0.1296 0.1417 0.6828 0.1920 ees
0 . 0.4866 0.2879 0.0087 0.0016 0.0000 0.0000
1 0.2822 s 0.2106 0.0787 0.0013 0.0001 0.0000
o 2 0.3032 0.3824 aee 0.0869 0.0226 0.0003 0.0000
10°K 3 0.0343 0.5438 0.3266 e 0.0315 0.0070 0.0001
4  0.0450 0.0619 0.6051 0.2240 e 0.0165 0.0024
5 0.0085 0.0922 0.0989 0.6516 0.2180 ‘oo 0.0104

6 0.0143 0.0282 0.1369 0.1535 0.7455 0.2431 e
0 ‘e 0.5905 0.6217 0.0505 0.0257 0.0018 0.0006
1 0.2596 vee 0.3513 0.2877 0.0181 0.0073 0.0005
o 2 0.2854 0.3666 e 0.2060 0.1477 0.0087 0.0024
200K 3 0.0379 0.4915 0.3373 e 0.1195 0.0836 0.0046
4 0.0454  0.0719 0.5692 0.2810 . 0.0848  0.0493
5 0.0107 0.0963 0.1119 0.6436 0.2811 ves 0.0636

6 0.0146 0.0315 0.1338 0.1576 0.7167 0.2832 cen
0 e 0.5947 0.8745 0.1287 0.1036 0.0194 0.0110
1 0.2276 vee 0.4284  0.5222  0.0723 0.0510 0.0099
o 2 0.2650 0.3387 cee 0.3063 0.3579 0.0508 0.0272
40K 3 0.0421  0.4462 0.3310 0.2285 0.2665 0.0365
4 0.0461 0.0825 0.5234 0.3088 .o 0.1898 0.1980
5 0.0141 0.0963 0.1224 0.5897 0.3120 aee 0.1507

6 0.0154 0.0364 0.1259 0.1565 0.6246 0.2927 “as
0 vew 0.5764 0.9654 0.1854 0.1664 0.0487 0.0322
1 0.2107 ees 0.4522 0.6263 0.1203 0.0972 0.0319
2 0.2548 0.3259 “ee 0.3498 0.4710 0.0971 0.0634
60°k 3 0.0461 0.4249 0.3289 ‘e 0.2847 0.3807 0.0802
4 0.0471 0.0908 0.4985 0.3200 con 0.2542 0.3105
5 0.0179 0.0962 0.1339 0.5552 0.3303 cee 0.2161

6 0.0173 0.0464 0.1273 0.1721 0.5865 0.3185 “us
0 e oo 0.5594 1.0136 0.2287 0.2164 0.0828 0.0580
1 0.1998 ves 0.4643 0.6872 0.1592 0.1351 0.0653
2 0.2497 0.319¢ ces 0.3767 0.5462 0.1411 0.0993
80°k 3 0.0497 0.4156 0.3303 ves 0.3202 0.4539 0.1310
4 0.0489 0.0977 0.4917 0.3282 ‘e 0.3055 0.3884
5 0.0215 0.0968 0.1471 0.5373 0.3527 ‘e 0.2824

6 0.0192 0.0600 0.1314 0.1991 0.5678 0.3624 .ee
0 cos 0.5451 1.0476 0.2632 0.2614 0.1177 0.0848
1 0.1922 een 0.4723 0.7319 0.1904 0.1658 0.1077
° 2 0.2476 0.3162 “ea 0.3965 0.6085 0.1818 0.1321
100°K 3 0.0527 0.4131 0.3335 fes 0.3450 0.5067 0.1871
4 0.0515 0.1033 0.4971 0.3348 cen 0.3510 0.4444
5 0.0249 0.0979 0.1605 0.5293 0.3777 vee 0.3520

6 0.0210 0.0750 0.1364 0.2311 0.5575 0.4155 oo

* In units of 10 10 cm3 8 1.

constants is by comparison with experiments that sample the anisotropic parts of the potential. For CO-He the only
available data is for microwave pressure broadening, and MAI values agree with this experiment to about 10 percent.
The computed rate constants are therefore tentatively estimated to be accurate to about 20 percent. Other experi-
mental information, such as nuclear magnetic resonance spin-lattice relaxation of *CO in He or low temperature
sound absorption measurements could provide further tests of the anisotropic parts of the MAI potential.

b) CO-H

Cross sections were computed for CO-H using the interaction potential described in § ITIf. We have ignored the
electron spin of the H atom; i.e., we have computed rotational excitation cross sections of CO summed over the
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possible spin flip on H. For energies below 100 cm ~* the close-coupling basis set included at least two closed channels.
Specifically, we have used a B6 basis below 38 cm ~*; B7 below 57 cm~1; B8 below 81 cm~*; and B9 below 106 cm~*.
A B8 basis was used to estimate cross sections at higher energies. Cross sections have been averaged over Boltzmann
energy distributions, and the resulting rate constants are presented in Table 6. The largest source of error is again
expected to be from inaccuracies in the interaction potential. It is somewhat difficult to assess the reliability of these

TABLE 6

MATRIX OF RATE COEFFICIENTS FOR CO-H*

Tk Ji/ Jf 0 1 2 3 4 5 6 7
0 vee 6.8194 0.0751 0.0001 0.0000 0.0000 0.0000 0.0000
1 0.8264 ... 0.2731 0.0044 0.0000 0.0000 0.0000 0.0000
2 0.4181 1.5001 ... 0.0613 0.0012 0.0000 0.0000 0.0000
° 3 0.0137 0.4825 1.2129 ... 0.0280 0.0001 0.0000 0.0000
5K 4 0.0090 0.0451 1.6029 1.8229 ... 0.0051 0.0000 0.0000
5 0.0026 0.0080 0.0378 1.2701 1.0643 ... 0.0012 0.0000
6 0.0001 0.0033 0.0082 0.0328 1.0403 0.7602 ... 0.0000
7 0.0000 0.0000 0.0004 0.0010 0.0039 0.1155 0.0798 ...
0 ces 1.1470 0.3565 0.0038 0.0002 0.0000 0.0000 0.0000
1 0.6651 ... 0.7182 0.0772 0.0007 0.0000 0.0000 0.0000
2 0.3753 1.3040 ... 0.3708 0.0417 0.0001 0.0000 0.0000
o 3  0.0152 0.5270 1.3938 ... 0.1731 0.0115 0.0000 0.0000
10°K 4 0.0063 0.0324 1.1145 1.2324 ... 0.0693 0.0037 0.0000
5 0.0023 0.0075 0.0328 1.0659 0.9026 ... 0.0350 0.0005
6 0.0001 0.0036 0.0087 0.0360 1.1152 0.8201 ... 0.0088
7 0.0001 0.0001 0.0020 0.0045 0.0181 0.5264 0.3676 ...
0 eee 1.2740 0.7862 0.0193 0.0026 0.0004 0.0000 0.0000
1 0.5601 ... 0.9595 0.3142 0.0065 0.0005 0.0001 0.0000
2 0.3607 1.0015 ... 0.7051 0.2234 0.0024 0.0001 0.0000
3 0.0145 0.5374 1.1553 ... 0.3968 0.1211 0.0010 0.0000
20°K 4 0.0047 0.0263 0.8615 0.9338 ... 0.2482 0.0727 0.0003
5 0.0021 0.0064 0.0301 0.9307 0.8104 ... 0.1789 0.0323
6 0.0001 0.0036 0.0082 0.0356 1.0572 0.7966 ... 0.1047
7 0.0001 0.0002 0.0035 0.0074 0.0304 0.8640 0.629%8 ...
0 con 1.4109 1.2866 0.0455 0.0094 0.0032 0.0001 0.0000
1 0.5401 ... 1.0416 0.6682 0.0221 0.0033 0.0010 0.0000
2 0.3898 0.8243 ... 0.8729 0.5339 0.0128 0.0017 0.0004
3 0.0149 0.5721 0.9443 ... 0.6213 0,4008 0.0083 0.0009
40°K 4 0.0042 0.0256 0.7814 0.8406 ... 0.4946 0.3159 0.0049
5 0.0023 0.0062 0.0306 0.8863 0.8084 ... 0.4171 0.2211
6 0.0001 0.0038 0.0081 0.0357 1.0021 0.8087 ... 0.3368
7 0.0001 0.0002 0.0043 ©0.0088 0.0356 0.9800 0.7690 ...
0 vee 1.5828 1.6813 0.0672 0.0165 0.0075 0.0004 0.0002
1 0.5786 ... 1.1327 0.9342 0.0369 0.0071 0.0031 0.0001
2 0.4434 0.8173 ... 0.9750 0.7669 0.0244 0.0045 0.0015
3 0.0167 0.6350 0.9185 ... 0.7731 0.6319 0.0178 0.0029
60°K 4 0.0046 0.0282 0.8126 0.8696 ... 0.6651 0.5390 0.0125
5 0.0027 0.0071 0.0335 0.9225 0.8631 ... 0.5913 0.4309
6 0.0002 0.0045 0.0091 0.0384 1.0295 0.8703 ... 0.5235
7 0.0002 0.0003 0.0051 0.0103 0.0394 1.0484 0.8654 ...
0 “er 1.7804 2.0792 0.0893 0.0258 0.0132 0.0008 0.0006
1 0.6359 ... 1.2532 1.1881 0.0524 0.0124 0.0061 0.0003
2 0.5116 0.8634 ... 1.0889 0.9845 0.0367 0.0085 0.0034
3 0.0183 0.7187 0.9572 ... 0.9140 0.8448 0.0286 0.0061
80°K 4 0.0057 0.0325 0.8878 0.9376 ... 0.8166 0.7474 0.0217
5 0.0034 0.0089 0.0383 1.0021 0.9444 ... 0.74p5 0.6353
6 0.0003 0.0056 0.0114 0.0434 1.1077 0.9567 ... 0.6917
7 0.0003 0.0004 0.0063 0.0129 0.0452 1.1453 0.9730 ...
0 veo 1.9976 2.5069 0.1142 0.0388 0.0206 0.0016 0.0013
1 0.7037 ... 1.8957 1.4550 0.0701 0.0197 ©.0102 0.0007
2 0.5817 0.9353 ... 1.2186 1.2103 0.0509 0.0142 0.0060
3 0.0227 0.8224 1.0278 ... 1.0577 1.0606 0.0409 0,0105
100°K 4 0.0075 0.0384 0.9907 1.0268 ... 0.9659 0.9570 0.0327
5 0.0043 0.0116 0.0450 1.1108 1.0423 ... 0.8873 0.8406
6 0.0004 0.0071 0.0148 0.0505 1.2181 1.0584 ... 0.8540
7 0.0004 0.0006 0.0079 0.0166 0.0532 1.2661 1.0905 ...

* In units of 101 em® &7,
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calculations due to the lack of experimental data for CO-H. However, the values in Table 6 are estimated to be
within 30 percent of the true rate constants.

¢) CO-H,

Close coupling calculations were performed assuming that Hy is a structureless spherical projectile and using the
final potential described in § ITlg. A BS basis was used for all calculations. The resulting cross sections were averaged
over Boltzmann energy distributions to obtain rate constants for rotational excitation; final values are presented
in Table 7.

As noted, these calculations are able to reproduce data for CO pressure broadening by H; and D,. (For the latter
we used the CO-H, interaction potential but the collisional reduced mass appropriate for CO-D,.) This is of only
limited significance in assessing the accuracy of these calculations, since the adjustable parameter may have been
able to compensate here for errors introduced by assuming a structureless H, projectile. Nevertheless, we believe
that the rates in Table 7 are generally reliable to 30 percent.

V. CONCLUDING REMARKS

We have outlined above theoretical procedures which can be used to compute accurate cross sections for collision
processes relevant to interstellar molecular clouds. These techniques have now been applied to a number of astro-
physically important systems in addition to the carbon monoxide reported here: HCN (Green and Thaddeus 1974),

TABLE 7
MATRIX OF RATE COEFFICIENTS FOR CO - Hz'

T, 3/ 3 o 1 2 3 4 5
0 . 0.0851  0.0504  0.0002  0.0000  0.0000
1 0.0888 ... 0.0318  0.0040  0.0000  ©.0000
o 2 0.2793  0.1748 ... 0.0088  0.0005  0.0000
°K 3 0.023¢  0.4327  0.1945 ... 0.0050  0.0001
4 0.0238 0.0331  0.6761  0.3230 ... 0.0010

5  0.0026 0.0553  0.0408  0.6845  0.1983 ...
0 . 6.3030  0.2626  0.0111  0.0009  0.0000
1 0.1757 ... 0.1932  0.0703  0.0011  0.0001
o, 2 0.2764 0.3508 ... 0.0984  0.0226  0.0002
10°k 3 0.0439  0.4796  0.3699 ... 0.0523  0.0074
4 0.0262 0.0541  0.6041  0.3724 ... 0.0200

5  0.0040 0.0579  0.0545 0.6818  0.2601 ...
) .. 0.6353  0.6471  0.0719  0.0183  0.0011
1 0.2793 . 6.4643  0.3018  0.0194  0.0051
o, 2 0.2069  0.4845 . 0.3211  0.1581  0.0064
20°K 3 0.0540  0.5161  0.5261 . 0.2021  0.0936
4 0.0323 0.0780  0.6098  0.4756 ... 0.1148

5  0.0062 0.0668  0.0802  0.7188  0.3749 ...
o . 0.9009  1.1007  0.1706  0.0904  0.0139
1 0.3449 ... 0.6786  0.6544  0.0805  0.0444
o, 2 0.333¢ 0.5370 .. 0.5476  0.4490  0.0509
40°K 3 0.0557  0.5602  0.5925 ... 0.4243  0.3529
4 0.0400 0.0832  0.6571  0.5740 ... 0.3211

5  0.0100 0.0840 0.1216  0.7797  0.5249 .
0 . 0.9924  1.3687  0.2346  0.1663  0.0431
1 0.3629 " 0.7637  0.8752  0.1396  0.1016
2 0.3610  0.5511 . 0.6367  0.6516  0.1197
60°k 2  0.0583  0.5949  0.5999 .. 0.5617  0.5629
4 0.0465 0.1067  0.6805  0.6318 ... 0.4897

5 0.0156 0.1009  0.1646  0.8211  0.6356 ...
0 . 1.0339  1.5540  0.2876  0.2355  0.0906
1 0.3694 .. 0.8144  1.0347  0.2003  0.1646
o 2 0.3825  0.5611 .. 0.6842  0.7954  0.2047
8°K 3  0.0622  0.6267  0.6015 ... 0.6673  0.7231
4 0.0522 0.1244  0.7172  0.6844 ... 0.6376

5 0.0233 0.1184  0.2134  0.8571  0.7374 ...
0 ... 1.0572  1.6973  0.3343  0.2968  0.1539
1 0.3725 ... 0.8517  1.1652  0.2641  0.2285
2 0.4007 0.5708 ... 0.7168  0.9058  0.3003
100°K 3 0.0666  0.6586  0.6046 ... 0.7590  0.8503
4 0.0573  0.1447  0.7414  0.7366 .. 0.7731

5  0.0321 0.1355  0.2653  0.8902  0.8344 ...

*  In units of 10710 em?® g1
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HD (Green 1974b), N,H* (Green 1975b), HCI (Green and Monchick 1975), and H,CO (Garrison et al. 1975). For
CO, HCN, HD, and HCl it has been possible to compare theoretical results with experimental data, mostly spectral
pressure broadening measurements, and in all cases the agreement has been very good. It would, of course, be
extremely desirable to have additional experimental data.

At the low temperatures in interstellar molecular clouds, only a small number of rotational levels are populated,
and this has allowed us to treat collision dynamics via essentially exact (i.e., converged close coupling) quantum
calculations. At higher temperatures or for systems with more closely spaced rotational levels, such calculations
become prohibitively expensive. Thus it is necessary to find cheaper, approximate scattering methods which are
nonetheless sufficiently accurate. Of course, “exact” quantum results are invaluable for assessing such methods,
and the CO-He calculations presented here have been used to test classical trajectory methods (Augustin and
Miller 1974), ““dimensionality reducing” quantum approximations (Green 1975¢), and the central field approxi-
mation (Monchick and Green 1975). It now appears that such methods will provide an adequate framework for
obtaining accurate theoretical collision cross sections for most of the systems of current astrophysical interest.

Several of the techniques used in these studies were developed by R. G. Gordon and co-workers; we are grateful
to Professor Gordon for many useful discussions. We would also like to thank R. G. Gordon, W. A. Lester, U.
Wabhilgren, and P. S. Bagus for making available computer codes used in various aspects of these calculations. One
of us (S. G.) would like to thank H. van Regemorter for hospitality at I’Observatoire de Meudon where the final
portions of this manuscript were completed.

APPENDIX

Although not mathematically rigorous, the adequacy of using a finite subspace of an infinite complete basis set
is often checked by considering the “convergence” of final results as the subspace is increased. Such basis set

TABLE Al

DEPENDENCE ON BASIS SET SIZE OF COMPUTED CROSS SECTIONS*

5 % B4 B5 B6 B7
0 1 5.64 5.69 5.32 5.39
1 2 4.85 5.59 5.50 5.27
2 3 7.18 4.57 5.06 4.96
3 4 8.98 6.57 4.17 4.69
4 5 . 7.56 5.74 3.95
5 6 .. 6.59 4.89
6 7 .. 5.62
0 2 12.79 12.26 11.29 11.56
13 8.46 10.49 9.17 8.52
2 4 8.30 7.44 8.33 7.89
3 5 8.03 6.63 7.58
4 6 e 6.36 6.11
507 . . 5.42
0 3 5.13 4.57 4.30 3.88
1 4 6.12 3.55 2.81 3.18
2 5 e 4.43 2.66 2.36
3 6 e 3.21 2.09
4 7 . 2.33
0 4 4.89 3.87 4.26 4.00
15 3.56 2.65 3.00
2 6 2.03 1.84
3 7 e 1.24
0 5 2.96 1.51 1.56
1 6 . 1.40 0.88
2 7 .. 8.76
o 6 1.16 1.05
17 0.46

(=]
-~
1=
'S
=)

line

0-1 27.76 27.37 27.90 27.70
1-2 23.77 25.12 25.75 25.35
0~ 2 27.36 27.00 28.04 27.91
1-3 24.71 25.28 25,71 26.03

*  Cross sections for rotational excitation and pressure

broadening (in 22) computed at a total energy of 130 em L.
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TABLE A2

DEPENDENCE ON BASIS SIZE OF THE J=13 PARTIAL CROSS SECTION*

EANFR BS B6 B7 B8 B  BI0
1 0 .115 110 .112 .112 111 112
2 1 L215 .209 .202 .207 .205 .206
3 2 .168 .185 .182 177 177 177
4 3 .251 .152 .173 .160 .159 .159
5 4 .408 .279 .187 .220 .212 .217
6 5 vee .417 .300 . 267 .265 .258
7T 6 e .530 .233 .247 .231
2 0 .310 .299 .303 .304 .306 .304
3 1 .479 .478 .461 .466 .469 .467
4 2 .452 477 .473 .448 ..451 .446
5 3 .510 472 .505 .479 .468 .463
6 4 ‘e .616 .589 .738 .739 .742
7 5 N 1.043 1.185 1.336 1.343
3 0 .039 .041 .039 .039 .039 039
4 1 .059 .053 .058 .052 .052 .052
5 2 .125 .069 .063 . 066 .062 .064
6 3 N .146 .086 .105 .101 .100
7 4 AN .241 .156 172 .163
4 0 . 042 .042 .042 .039 .039 .039
5 1 .081 .072 .076 .70 .067 . 067
6 2 e 107 .098 122 .121 121
7T 38 .. .182 .207 .232 .234
5 0 .010 .005 005 .005 .005 .005
6 1 e .019 .010 .016 .015 .015
7 2 e .0385 .022 .027 .025
6 0 .009 .009 .012 .012 .012
7T 1 AN .023 .028 .033 .034
7T 0 .004 .002 .003 .003
time 1 7.7 35.8 66.7 115.0 238.0 376.0

© -
*  Cross sections in A% computed at a total energy of 130.0 em 1

+ Computation time in seconds on an IBM 360/95.

“tests” were done for the three CO-He interaction potentials considered in this study and for a range of energies.
Only one set of results is presented here, those for the MAI potential at 130.0 cm™~1; however, these are quite
typical of the others. At 130.0cm™?, j = 0 through j = 7 are open channels, and we considered basis sets with
Jmax = 4 (B4) 10 jmax = 10 (B10). For bases B4 to B7, calculations were done at total angular momenta J = 0
through J = 35, and cross sections for rotational excitation and pressure broadening were obtained via equations
(2.8) and (2.9); results are presented in Table Al. For reasons of economy, only the J = 13 partial cross sections
were computed for larger basis sets; these results are given in Table A2.

Because the potential used here is significantly more anisotropic than those used in previous studies, we find
somewhat poorer convergence than has been reported by other workers (Lester and Bernstein 1967; Sams and
Kouri 1970; Eastes and Secrest 1972). On the other hand, the results presented here are some of the strongest
evidence to date that basis set truncation is, indeed, not a serious source of error in calculations of this sort. We
have used considerably larger basis sets than most previous workers, and the constancy of cross sections among the
lower levels—oy4, 091, 029, €tc.—as the basis is increased from B4 to B10 is a good indication that these values
actually are at the infinite basis limit. The criterion of including all open channels would seem from these calcula-
tions to be less important than previously assumed. It does, however, appear desirable to include channels which

are directly coupled by the significant anisotropies in the potential (cf. eq. [3.1]) to the highest rotor level for which
cross sections are needed.
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